~J N (33 AN L2 [\

o]

10

po—
N

_h..‘
(V%)

o o
(9, R

[\
N

IN THE UNITED STATES DISTRICT COURT
FOR THE NORTHERN DISTRICT OF CALIFORNIA

Apple Inc., Civil Action No.: 3:15-cv-00154

Plaintiff, DECLARATION OF THE INTERNET
ENGINEERING TASK FORCE, AN
ORGANIZED ACTIVITY OF THE
INTERNET SOCIETY

Telefonaktiebolaget LM Ericsson,
Inc. et al.,,

Defendants.

I, Alexa Morris, based on my personal knowledge and information, hereby declare as follows:

1. I am Executive Director of the Internet Engineering Task Force (“IETF”) and have held
this position since January 1, 2008.

2. Among my responsibilities as Executive Director, I act as the custodian of Internet-
Drafts for the IETF. The IETF is an organized activity of the Internet Society. The
Internet Society is a professional membership organization of Internet experts that
comments on policies and practices and oversees a number of other boards and task
forces dealing with network policy issues. Through my position at IETF, I have
personal knowledge of the facts stated herein.

3. I make this declaration based on my personal knowledge and information contained in
the business records of the IETF, or confirmation with other responsible IETF personnel

with such knowledge.

DECLARATION OF THE INTERNET ENGINEERING TASK FORCE, AN ORGANIZED ACTIVITY OF THE INTERNET SOCIETY




Ly

6

M
(49

. o [\®] (3] b9 N
~J [ox Wy EEN (] b

b
o e]

4. It is the regular practice of the IETF to publish Internet-Drafts and make them available
to the public on its website at www.ietf.org. The IETF maintains copies of Internet-
Drafts in the ordinary course of its regularly conducted activities. An Internet-Draft is a
working document of the IETF, its areas, and its working groups. Other groups may
also distribute working documents as Internet-Drafts. During the development of a
specification, draft versions of the document are made available for informal review and
comment by placing them in the IETF’s Internet-Drafts directory. This makes an
evolving working document readily available to a wide audience, facilitating the process
of review and revision. See http://www.ietf.org/id-info/.

5. Attachment A hereto lists two Internet-Drafts, true and correct copies of which are
included as Exhibits 1-2 on the accompanying CD.

6. 1 personally reviewed the documents included as Exhibits 1-2 on the accompanying CD.

7. 1 hereby certify, in accordance with the requirements of Federal Rule of Evidence 902,
that Exhibit 1-2 on the accompanying CD constitute a record of regularly conducted
business activity which was (A) made at or near the time of the occurrence of the matters
set forth by, or from information transmitted by, a person with knowledge of those
matters; (B) kept in the course of the regularly conducted activity; and (C) made by the
regularly conducted activity as a regular practice.

8. Based on a search of IETF records, I have determined that the IETF maintained a true
and correct copy of Exhibit 1 bearing the Bates number IETF_000081-IETF_000101 on
the accompanying CD, titled “SSH Transport Layer Protocol,” submitted by T. Ylonen
et al. to the IETF, and dated September 2002, in the ordinary course of its regularly

conducted activities.

2
DECLARATION OF THE INTERNET ENGINEERING TASK FORCE, AN ORGANIZED ACTIVITY OF THE INTERNET SOCIETY




[9'S)

W

-~ O

e
(9]

16
17

18

J
=

9.

10.

11.

Based on a search of IETF records and the IETF’s course of conduct in publishing
Internet-Drafts, I have also determined that Exhibit 1 on the accompanying CD was
published on the IETF website (www.ietf.org) at least as of September 2002 and was
reasonably accessible to the public, and was disseminated or otherwise available to the
extent that persons interested and ordinarily skilled in the subject matter or art exercising
reasonable diligence could have located it.

Based on a search of IETF records, I have determined that the IETF maintained a true
and correct copy of Exhibit 2 bearing the Bates numbers IETF_000102-IETF_000109 on
the accompanying CD, titled “Key Derivation for Authentication, Integrity, and
Privacy,” submitted by Marc Horowitz to the IETF, and dated August 1998, in the
ordinary course of its regularly conducted activities.

Based on a search of IETF records and the IETF’s course of conduct in publishing
Internet-Drafts, I have also determined that Exhibit 2 on the accompanying CD was
published on the IETF website (www.ietf.org) at least as of August 1998 and was
reasonably accessible to the public, and was disseminated or otherwise available to the
extent that persons interested and ordinarily skilled in the subject matter or art exercising
reasonable diligence could have located it.

Pursuant to Section 1746 of Title 28 of United States Code, I declare under penalty of

perjury under the laws of the United States of America that the foregoing is true and correct and

that the foregoing is based upon personal knowledge and information and is believed to be true.

Date: (i Cté/éw—a /57 /S By: %

Alexa Morris

3

DECLARATION OF THE INTERNET ENGINEERING TASK FORCE, AN ORGANIZED ACTIVITY OF THE INTERNET SOCIETY




ATTACHMENT A

Authenticated Documents

h

Exhibit
No.

Title

File Name

Publication Date

1

"SSH Transport Layer Protocol" by T.
Ylonen et. al.,

draft-ietf-secsh-
userauth-18.

September 2002

~1

"Key Derivation for Authentication,
Integrity, and Privacy" by Marc Horowitz

draft -horowitz-
key-derivation-02

August 1998

4

DECLARATION OF THE INTERNET ENGINEERING TASK FORCE, AN ORGANIZED ACTIVITY OF THE INTERNET SOCIETY




(%]

~]

A p— -
(] [SS] p—

I
o

paa
h

16
17
18

4. Tt is the regular practice of the IETF to publish Internet-Drafts and make them available

to the public on its website at www.ietf.org. The IETF maintains copies of Internet-
Drafts in the ordinary course of its regularly conducted activities. An Internet-Draft is a
working document of the IETF, its areas, and its working groups. Other groups may
also distribute working documents as Internet-Drafts. During the development of a
specification, draft versions of the document are made available for informal review and
comment by placing them in the IETF’s Internet-Drafts directory. This makes an
evolving working document readily available to a wide audience, facilitating the process

of review and revision. See http://www.ietf.org/id-info/.

. Attachment A hereto lists two Internet-Drafts, true and correct copies of which are

included as Exhibits 1-2 on the accompanying CD.

. I personally reviewed the documents included as Exhibits 1-2 on the accompanying CD.

. I hereby certify, in accordance with the requirements of Federal Rule of Evidence 902,

that Exhibit 1-2 on the accompanying CD constitute a record of regularly conducted
business activity which was (A) made at or near the time of the occurrence of the matters

set forth by, or from information transmitted by, a person with knowledge of those




Network Working Group
Ylonen

Internet-Draft

Corp

Expires: March 2, 2003
Ed.

Inc

2002

Tz
SSH Communications Security
D. Moffat,
Sun Microsystems,

September

SSH Authentication Protocol

draft—ietf-secsh—-userauth-18. txt

Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 1@ of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that

other

groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six

months

and may be updated, replaced, or obsoleted by other documents at

any

time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress.™

The list of current Internet-Drafts can be accessed at http://

www. ietf.org/ietf/lid—-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at

http://www.ietf.org/shadow.html.

This Internet-Draft will expire on March 2, 2003.

Copyright Notice

Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

SSH is a protocol for secure remote login and other secure network
services over an insecure network. This document describes the SSH
authentication protocol framework and public key, password, and

host-based client authentication methods. Additional authentication

IETF_000081



methods are described in separate documents. The SSH authentication
protocol runs on top of the SSH transport layer protocol and

provides
a single authenticated tunnel for the SSH connection protocol.

Ylonen & Moffat Expires March 2, 2003 [Page
1]

Internet-Draft SSH Authentication Protocol September
2002

Table of Contents

1. Contributors = « + & & & s 5 s = = &« s = 3 2 & s 3 3 = & = =
’ 2. Introduction .
’ 3. Conventions Used in This Document . « « « « & & & « « & &
’ 3.1 The Authentication Protocol Framework . . . « &« « « &+ & &
’ 3.1.1 Authentication Requests . « « « « & « & = & & = = &« =« =
: 3.1.2 Responses to Authentication Requests .
’ 3.1.3 The "none" Authentication Request . « « &« =+ & &« =« » &
° 3.1.4 Completion of User Authentication . . . . « « « & & « &
° 3.1.5 Banner Message . « « :+ s s s s« s s s = 3 = % = o® 3 = &= w =
! 3.2 Authentication Protocol Message Numbers
: 3.3 Public Key Authentication Method: publickey . . « « + « & &

3.4 Password Authentication Method: password . . « « « « « « . .
10
3.5 Host-Based Authentication: hostbased .

11
4, Security Considerations . .« + &« « & & & & = & « & & & & &
12
Normative .+ & & & « = & & = s = s 5 s 35 5 &
13

IETF_000082



Informative . . .

13
Authors' Addresses . « « = = «
14
Intellectual Property and Copyright Statements .
15
Ylonen & Moffat Expires March 2, 2003 [Page
2]
Internet-Draft SSH Authentication Protocol September
2002

1. Contributors

The major original contributors of this document were: Tatu Ylonen,
Tero Kivinen, Timo J. Rinne, Sami Lehtinen (all of SSH
Communications

Security Corp), and Markku-Juhani 0. Saarinen (University of

IETF_000083



Jyvaskyla)

The document editor is: Darren.Moffat@Sun.COM. Comments on this
internet draft should be sent to the IETF SECSH working group,
details at: http://ietf.org/html.charters/secsh-charter.html

2. Introduction

The SSH authentication protocol is a general-purpose user

authentication protocol. It is intended to be run over the SSH

transport layer protocol [SSH-TRANS]. This protocol assumes that
the

underlying protocols provide integrity and confidentiality

protection.

This document should be read only after reading the SSH
architecture

document [SSH-ARCH]. This document freely uses terminology and

notation from the architecture document without reference or
further

explanation.

The service name for this protocol is "“ssh-userauth".

When this protocol starts, it receives the session identifier from

the lower-level protocol (this is the exchange hash H from the
first

key exchange). The session identifier uniquely identifies this

session and is suitable for signing in order to prove ownership of
a

private key. This protocol also needs to know whether the lower-
level

protocol provides confidentiality protection.

3. Conventions Used in This Document
The keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD

NOT",
and "MAY" that appear in this document are to be interpreted as

described in [RFC2119]

The used data types and terminology are specified in the
architecture

document [SSH-ARCH]

The architecture document also discusses the algorithm naming
conventions that MUST be used with the SSH protocols.

3.1 The Authentication Protocol Framework

IETF_000084



The server drives the authentication by telling the client which

Ylonen & Moffat Expires March 2, 2003 [Page
3]

Internet-Draft SSH Authentication Protocol September
2002

authentication methods can be used to continue the exchange at any

given time. The client has the freedom to try the methods listed by

the server in any order. This gives the server complete control
over

the authentication process if desired, but also gives enough

flexibility for the client to use the methods it supports or that
are

most convenient for the user, when multiple methods are offered by

the server.

Authentication methods are identified by their name, as defined in

[SSH-ARCH]. The "none" method is reserved, and MUST NOT be listed
as

supported. However, it MAY be sent by the client. The server MUST

always reject this request, unless the client is to be allowed in

without any authentication, in which case the server MUST accept
this

request. The main purpose of sending this request is to get the
list

of supported methods from the server.

The server SHOULD have a timeout for authentication, and disconnect
if the authentication has not been accepted within the timeout
period. The RECOMMENDED timeout period is 10 minutes.

Additionally,
the implementation SHOULD limit the number of failed authentication
attempts a client may perform in a single session (the RECOMMENDED
limit is 20 attempts). If the threshold is exceeded, the server
SHOULD disconnect.

3.1.1 Authentication Requests

All authentication requests MUST use the following message format.

Only the first few fields are defined; the remaining fields depend
on

the authentication method.

byte SSH_MSG_USERAUTH_REQUEST
string user name (in IS0-10646 UTF-8 encoding [RFC2279])

IETF_000085



string service name (in US-ASCII)
string method name (US—-ASCII)
The rest of the packet is method-specific.

The user name and service are repeated in every new authentication

attempt, and MAY change. The server implementation MUST carefully

check them in every message, and MUST flush any accumulated

authentication states if they change. If it is unable to flush
some

authentication state, it MUST disconnect if the user or service
name

changes.

The service name specifies the service to start after
authentication.

There may be several different authenticated services provided. If

the requested service is not available, the server MAY disconnect

immediately or at any later time. Sending a proper disconnect

message is RECOMMENDED. 1In any case, if the service does not
exist,

Ylonen & Moffat Expires March 2, 2003 [Page
4]

Internet-Draft SSH Authentication Protocol September
2002

authentication MUST NOT be accepted.

If the requested user does not exist, the server MAY disconnect, or

MAY send a bogus list of acceptable authentication methods, but
never

accept any. This makes it possible for the server to avoid

disclosing information on which accounts exist. In any case, if
the

user does not exist, the authentication request MUST NOT be
accepted.

While there is usually little point for clients to send requests
that

the server does not list as acceptable, sending such requests is
not

an error, and the server SHOULD simply reject requests that it does

not recognize.

An authentication request MAY result in a further exchange of
messages. All such messages depend on the authentication method

IETF_000086



used, and the client MAY at any time continue with a new

SSH_MSG_USERAUTH_REQUEST message, in which case the server MUST

abandon the previous authentication attempt and continue with the
new

one.

3.1.2 Responses to Authentication Requests

If the server rejects the authentication request, it MUST respond
with the following:

byte SSH_MSG_USERAUTH_FAILURE
string authentications that can continue
boolean partial success

"Authentications that can continue" is a comma-separated list of
authentication method names that may productively continue the
authentication dialog.

It is RECOMMENDED that servers only include those methods in the
list

that are actually useful. However, it is not illegal to include

methods that cannot be used to authenticate the user.

Already successfully completed authentications SHOULD NOT be
included

in the list, unless they really should be performed again for some

reason.

"Partial success" MUST be TRUE if the authentication request to

which
this is a response was successful. It MUST be FALSE if the request

was not successfully processed.

When the server accepts authentication, it MUST respond with the

following:
Ylonen & Moffat Expires March 2, 2003 [Page
5]
Internet-Draft SSH Authentication Protocol September
2002
byte SSH_MSG_USERAUTH_SUCCESS

Note that this is not sent after each step in a multi-method

IETF_000087



authentication sequence, but only when the authentication is
complete.

The client MAY send several authentication requests without waiting

for responses from previous requests. The server MUST process each

request completely and acknowledge any failed requests with a

SSH_MSG_USERAUTH_FAILURE message before processing the next
request.

A request that results in further exchange of messages will be

aborted by a second request. It is not possible to send a second

request without waiting for a response from the server, if the
first

request will result in further exchange of messages. No

SSH_MSG_USERAUTH_FAILURE message will be sent for the aborted
method.

SSH_MSG_USERAUTH_SUCCESS MUST be sent only once. When
SSH_MSG_USERAUTH_SUCCESS has been sent, any further authentication
requests received after that SHOULD be silently ignored.

Any non-authentication messages sent by the client after the
request

that resulted in SSH_MSG_USERAUTH_SUCCESS being sent MUST be passed
to the service being run on top of this protocol. Such messages

can
be identified by their message numbers (see Section Message Numbers
(Section 3.2)).

3.1.3 The "none" Authentication Request

A client may request a list of authentication methods that may
continue by using the "none" authentication method.

If no authentication at all is needed for the user, the server MUST
return SSH_MSG_USERAUTH_SUCCESS. Otherwise, the server MUST return
SSH_MSG_USERAUTH_FAILURE and MAY return with it a list of
authentication methods that can continue.

This method MUST NOT be listed as supported by the server.
3.1.4 Completion of User Authentication

Authentication is complete when the server has responded with

SSH_MSG_USERAUTH_SUCCESS; all authentication related messages

received after sending this message SHOULD be silently ignored.

After sending SSH_MSG_USERAUTH_SUCCESS, the server starts the
requested service.

IETF_000088



Ylonen & Moffat Expires March 2, 2003 [Page
6]

Internet-Draft SSH Authentication Protocol September
2002

3.1.5 Banner Message

In some jurisdictions, sending a warning message before

authentication may be relevant for getting legal protection. Many

UNIX machines, for example, normally display text from "/etc/
issue',

or use "“tcp wrappers" or similar software to display a banner
before

issuing a login prompt.

The SSH server may send a SSH_MSG_USERAUTH_BANNER message at any
time

before authentication is successful. This message contains text to

be displayed to the client user before authentication is attempted.

The format is as follows:

byte SSH_MSG_USERAUTH_BANNER
string message (IS0-10646 UTF-8)
string language tag (as defined in [RFC3066])

The client SHOULD by default display the message on the screen.

However, since the message is likely to be sent for every login

attempt, and since some client software will need to open a
separate

window for this warning, the client software may allow the user to

explicitly disable the display of banners from the server. The

message may consist of multiple lines.

If the message string is displayed, control character filtering
discussed in [SSH-ARCH] SHOULD be used to avoid attacks by sending
terminal control characters.

3.2 Authentication Protocol Message Numbers
A1l message numbers used by this authentication protocol are in the
range from 50 to 79, which is part of the range reserved for
protocols running on top of the SSH transport layer protocol.

Message numbers of 80 and higher are reserved for protocols running
after this authentication protocol, so receiving one of them before

IETF_000089



authentication is complete is an error, to which the server MUST

respond by disconnecting (preferably with a proper disconnect
message

sent first to ease troubleshooting).

After successful authentication, such messages are passed to the
higher-level service.

These are the general authentication message codes:

#define SSH_MSG_USERAUTH_REQUEST 50

#define SSH_MSG_USERAUTH_FAILURE 51

#define SSH_MSG_USERAUTH_SUCCESS 52
Ylonen & Moffat Expires March 2, 2003 [Page
71
Internet-Draft SSH Authentication Protocol September
2002

#define SSH_MSG_USERAUTH_BANNER 53

In addition to the above, there is a range of message numbers
(60..79) reserved for method-specific messages. These messages are
only sent by the server (client sends only SSH_MSG_USERAUTH_REQUEST
messages). Different authentication methods reuse the same message
numbers.

3.3 Public Key Authentication Method: publickey

The only REQUIRED authentication method is public key
authentication.

All implementations MUST support this method; however, not all
users

need to have public keys, and most local policies are not likely to

require public key authentication for all users in the near future.

With this method, the possession of a private key serves as
authentication. This method works by sending a signature created
with a private key of the user. The server MUST check that the key
is a valid authenticator for the user, and MUST check that the
signature is valid. If both hold, the authentication request MUST
be
accepted; otherwise it MUST be rejected. (Note that the server MAY
require additional authentications after successful
authentication.)

IETF_000090



Private keys are often stored in an encrypted form at the client

host, and the user must supply a passphrase before the signature
can

be generated. Even if they are not, the signing operation involves

some expensive computation. To avoid unnecessary processing and
user

interaction, the following message is provided for querying whether

authentication using the key would be acceptable.

byte SSH_MSG_USERAUTH_REQUEST
string user name

string service

string "publickey"

boolean  FALSE

string public key algorithm name

string public key blob

Public key algorithms are defined in the transport layer
specification [SSH-TRANS]. The public key blob may contain
certificates.

Any public key algorithm may be offered for use in authentication.

In particular, the list is not constrained by what was negotiated

during key exchange. If the server does not support some
algorithm,

it MUST simply reject the request.

The server MUST respond to this message with either

Ylonen & Moffat Expires March 2, 2003 [Page
8]

Internet-Draft SSH Authentication Protocol September
2002

SSH_MSG_USERAUTH_FAILURE or with the following:

byte SSH_MSG_USERAUTH_PK_OK
string public key algorithm name from the request
string public key blob from the request

To perform actual authentication, the client MAY then send a
signature generated using the private key. The client MAY send the
signature directly without first verifying whether the key is
acceptable. The signature is sent using the following packet:

byte SSH_MSG_USERAUTH_REQUEST

IETF_000091



string user name

string service

string "publickey"

boolean TRUE

string public key algorithm name

string public key to be used for authentication
string signature

Signature is a signature by the corresponding private key over the
following data, in the following order:

string session identifier

byte SSH_MSG_USERAUTH_REQUEST
string user name

string service

string "publickey"

boolean  TRUE
string public key algorithm name
string public key to be used for authentication

When the server receives this message, it MUST check whether the
supplied key is acceptable for authentication, and if so, it MUST
check whether the signature is correct.

If both checks succeed, this method is successful. Note that the

server may require additional authentications. The server MUST

respond with SSH_MSG_USERAUTH_SUCCESS (if no more authentications
are

needed), or SSH_MSG_USERAUTH_FAILURE (if the request failed, or
more

authentications are needed).

The following method-specific message numbers are used by the
publickey authentication method.

/* Key-based x/

#define SSH_MSG_USERAUTH_PK_OK 60
Ylonen & Moffat Expires March 2, 2003 [Page
9]
Internet-Draft SSH Authentication Protocol September
2002

3.4 Password Authentication Method: password

IETF_000092



Password authentication uses the following packets. Note that a
server MAY request the user to change the password. All
implementations SHOULD support password authentication.

byte SSH_MSG_USERAUTH_REQUEST
string user name

string service

string "password"

boolean  FALSE
string plaintext password (IS0-10646 UTF-8)

Note that the password is encoded in IS0-10646 UTF-8. It is up to

the server how it interprets the password and validates it against

the password database. However, if the client reads the password
in

some other encoding (e.g., ISO 8859-1 (ISO Latinl)), it MUST
convert

the password to IS0-10646 UTF-8 before transmitting, and the server

MUST convert the password to the encoding used on that system for

passwords.

Note that even though the cleartext password is transmitted in the
packet, the entire packet is encrypted by the transport layer.
Both
the server and the client should check whether the underlying
transport layer provides confidentiality (i.e., if encryption is
being used). If no confidentiality is provided (none cipher),
password authentication SHOULD be disabled. If there is no
confidentiality or no MAC, password change SHOULD be disabled.

Normally, the server responds to this message with success or
failure. However, if the password has expired the server SHOULD
indicate this by responding with SSH_MSG_USERAUTH_PASSWD_CHANGEREQ.
In anycase the server MUST NOT allow an expired password to be used
for authentication.

byte SSH_MSG_USERAUTH_PASSWD_CHANGEREQ
string prompt (IS0-10646 UTF-8)
string language tag (as defined in [RFC3066])

In this case, the client MAY continue with a different
authentication

method, or request a new password from the user and retry password

authentication using the following message. The client MAY also
send

this message instead of the normal password authentication request
without the server asking for it.

byte SSH_MSG_USERAUTH_REQUEST
string user name

IETF_000093



string service

Ylonen & Moffat Expires March 2, 2003 [Page
10]
Internet-Draft SSH Authentication Protocol September
2002

string "password"

boolean TRUE
string plaintext old password (IS0-10646 UTF-8)
string plaintext new password (IS0-10646 UTF-8)

The server must reply to request message with
SSH_MSG_USERAUTH_SUCCESS, SSH_MSG_USERAUTH_FAILURE, or another
SSH_MSG_USERAUTH_PASSWD_CHANGEREQ. The meaning of these is as
follows:

SSH_MSG_USERAUTH_SUCCESS The password has been changed, and
authentication has been successfully completed.

SSH_MSG_USERAUTH_FAILURE with partial success The‘password has
been changed, but more authentications are needed.

SSH_MSG_USERAUTH_FAILURE without partial success The password
has

not been changed. Either password changing was not supported,
or

the old password was bad. Note that if the server has already

sent SSH_MSG_USERAUTH_PASSWD_CHANGEREQ, we know that it supports

changing the password.

SSH_MSG_USERAUTH_CHANGEREQ The password was not changed because
the new password was not acceptable (e.g. too easy to guess).

The following method-specific message numbers are used by the
password authentication method.

#define SSH_MSG_USERAUTH_PASSWD_CHANGEREQ 60

3.5 Host-Based Authentication: hostbased

Some sites wish to allow authentication based on the host where the

user is coming from, and the user name on the remote host. While

this form of authentication is not suitable for high—security
sites,

IETF_000094



it can be very convenient in many environments. This form of
authentication is OPTIONAL. When used, special care SHOULD be taken
to prevent a regular user from obtaining the private host key.

The client requests this form of authentication by sending the
following message. It is similar to the UNIX "rhosts" and
"hosts.equiv" styles of authentication, except that the identity of
the client host is checked more rigorously.

This method works by having the client send a signature created
with
the private key of the client host, which the server checks with

that
host's public key. Once the client host's identity is established,

Ylonen & Moffat Expires March 2, 2003 [Page
11]

Internet-Draft SSH Authentication Protocol September
2002

authorization (but no further authentication) is performed based on
the user names on the server and the client, and the client host

name.
byte SSH_MSG_USERAUTH_REQUEST
string user name
string service
string "hostbased"

string public key algorithm for host key

string public host key and certificates for client host
string client host name (FQDN; US-ASCII)

string user name on the client host (IS0-10646 UTF-8)
string signature

; Public key algorithm names for use in "public key algorithm for

ost
key" are defined in the transport layer specification. The "public
host key for client host" may include certificates.

Signature is a signature with the private host key of the following
data, in this order:

string session identifier

byte SSH_MSG_USERAUTH_REQUEST
string user name

string service

IETF_000095



string "hostbased"

string public key algorithm for host key

string public host key and certificates for client host
string client host name (FQDN; US-ASCII)

string user name on the client host(IS0-10646 UTF-8)

The server MUST verify that the host key actually belongs to the

client host named in the message, that the given user on that host
is

allowed to log in, and that the signature is a valid signature on
the

appropriate value by the given host key. The server MAY ignore the

client user name, if it wants to authenticate only the client host.

It is RECOMMENDED that whenever possible, the server perform
additional checks to verify that the network address obtained from
the (untrusted) network matches the given client host name. This
makes exploiting compromised host keys more difficult. Note that
this may require special handling for connections coming through a
firewall.

4, Security Considerations

The purpose of this protocol is to perform client user
authentication. It assumed that this runs over a secure transport

Ylonen & Moffat Expires March 2, 2003 [Page
12]

Internet-Draft SSH Authentication Protocol September
2002

layer protocol, which has already authenticated the server machine,
established an encrypted communications channel, and computed a
unique session identifier for this session. The transport layer
provides forward secrecy for password authentication and other
methods that rely on secret data.

Full security considerations for this protocol are provided in
Section 8 of [SSH-ARCHI]

Normative
[SSH—-ARCH]

Ylonen, T., "“SSH Protocol Architecture", I-D
draft-ietf-architecture-15.txt, Oct 2003.

IETF_000096



[SSH-TRANS]
Ylonen, T., "SSH Transport Layer Protocol", I-D
draft-ietf-transport-17.txt, Oct 2003.

[SSH-USERAUTH]
Ylonen, T., "SSH Authentication Protocol", I-D
draft-ietf-userauth-18.txt, Oct 2003.

[SSH-CONNECT]
Ylonen, T., "SSH Connection Protocol", I-D
draft-ietf-connect-18.txt, Oct 2003.

[SSH-NUMBERS ]
Lehtinen, S. and D. Moffat, "SSH Protocol Assigned
Numbers", I-D draft-ietf-secsh—assignednumbers-05.txt,
Oct
2003.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

Informative

[RFC3066] Alvestrand, H., "Tags for the Identification of
Languages", BCP 47, RFC 3066, January 2001.

[RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO
10646", RFC 2279, January 1998.

Yl?nen & Moffat Expires March 2, 2003 [Page
13

Internet-Draft SSH Authentication Protocol September
2002

Authors' Addresses

Tatu Ylonen

SSH Communications Security Corp
Fredrikinkatu 42

HELSINKI FIN-00100

IETF_000097



Finland

EMail: ylo@ssh.com

Darren J. Moffat (editor)
Sun Microsystems, Inc

17 Network Circle

Menlo Park 95025

USA

EMail: Darren.Moffat@Sun.COM

Ylonen & Moffat Expires March 2, 2003 [Page
14]

Internet-Draft SSH Authentication Protocol September
2002

IETF_000098



Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any
intellectual property or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the
IETF's procedures with respect to rights in standards—track and
standards-related documentation can be found in BCP-11. Copies of
claims of rights made available for publication and any assurances
of
licenses to be made available, or the result of an attempt made to
obtain a general license or permission for the use of such
proprietary rights by implementors or users of this specification
can
be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this standard. Please address the information to the IETF Executive
Director.

The IETF has been notified of intellectual property rights claimed
in

regard to some or all of the specification contained in this

document. For more information consult the online list of claimed

rights.

Full Copyright Statement
Copyright (C) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain
iy
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph
are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be

IETF_000099



followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.

Ylonen & Moffat Expires March 2, 2003 [Page
151

Internet-Draft SSH Authentication Protocol September
2002

This document and the information contained herein is provided on
an

"AS IS"™ basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING

TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

Funding for the RFC Editor function is currently provided by the
Internet Society.

IETF_000100



Ylonen & Moffat Expires March 2, 2003 [Page
161

IETF_000101



Network Working Group M.
Horowitz

<draft-horowitz-key—-derivation—-02.txt> Stonecast,
Inc.
Internet-Draft August,
1998

Key Derivation for Authentication, Integrity, and Privacy
Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months

and may be updated, replaced, or obsoleted by other documents at
any

time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as *“work in progress.'’

To learn the current status of any Internet-Draft, please check the

‘*1id-abstracts.txt'' listing contained in the Internet-Drafts
Shadow

Directories on ftp.ietf.org (US East Coast), nic.nordu.net

(Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific

Rim).

Distribution of this memo is unlimited. Please send comments to
the
author.

Abstract

Recent advances in cryptography have made it desirable to use
longer

cryptographic keys, and to make more careful use of these keys. In

particular, it is considered unwise by some cryptographers to use
the

same key for multiple purposes. Since most cryptographic-based

systems perform a range of functions, such as authentication, key

exchange, integrity, and encryption, it is desirable to use
different

cryptographic keys for these purposes.

This RFC does not define a particular protocol, but defines a set

IETF_000102



of
cryptographic transformations for use with arbitrary network
protocols and block cryptographic algorithm.

Deriving Keys

In order to use multiple keys for different functions, there are

two
possibilities:

— Each protocol "“key'' contains multiple cryptographic keys. The
implementation would know how to break up the protocol "“key''
for
use by the underlying cryptographic routines.

- The protocol " “key'' is used to derive the cryptographic keys.
The implementation would perform this derivation before calling

Horowitz [Page
1]

Internet Draft Key Derivation March,
1997

the underlying cryptographic routines.

In the first solution, the system has the opportunity to provide
separate keys for different functions. This has the advantage that
if one of these keys is broken, the others remain secret. However,
this comes at the cost of larger " “keys'' at the protocol layer.
In
addition, since these "“keys'' may be encrypted, compromising the
cryptographic key which is used to encrypt them compromises all the
component keys. Also, the not all "‘“keys'' are used for all
possible
functions. Some " “keys'', especially those derived from passwords,
are generated from limited amounts of entropy. Wasting some of
this
entropy on cryptographic keys which are never used is unwise.

The second solution uses keys derived from a base key to perform

cryptographic operations. By carefully specifying how this key is

used, all of the advantages of the first solution can be kept,
while

eliminating some disadvantages. In particular, the base key must

IETF_000103



be
used only for generating the derived keys, and this derivation must
be non-invertible and entropy-preserving. Given these
restrictions,
compromise of one derived keys does not compromise the other

subkeys.
Attack of the base key is limited, since it is only used for
derivation, and is not exposed to any user data.

Since the derived key has as much entropy as the base keys (if the

cryptosystem is good), password-derived keys have the full benefit
of

all the entropy in the password.

To generate a derived key from a base key:

Derived Key = DK(Base Key, Well-Known Constant)

where
DK(Key, Constant) = k-truncate(E(Key, Constant))

In this construction, E(Key, Plaintext) is a block cipher, Constant

is a well-known constant defined by the protocol, and k-truncate

truncates its argument by taking the first k bits; here, k is the
key

size of E.

If the output of E is is shorter than k bits, then some entropy in

the key will be lost. If the Constant is smaller than the block
size

of E, then it must be padded so it may be encrypted. If the
Constant

is larger than the block size, then it must be folded down to the

block size to avoid chaining, which affects the distribution of

entropy.

In any of these situations, a variation of the above construction
is

used, where the folded Constant is encrypted, and the resulting

output is fed back into the encryption as necessary (the |
indicates

concatentation):

K1 = E(Key, n-fold(Constant))
K2 = E(Key, K1)
Horowitz [Page

IETF_000104



2]

Internet Draft Key Derivation March,
1997

K3 = E(Key, K2)

K4=lll

DK(Key, Constant) = k-truncate(Kl1 | K2 | K3 | K4 ...)
n-fold is an algorithm which takes m input bits and " “stretches'’
them to form n output bits with no loss of entropy, as described in
[Blumenthal96]. In this document, n-fold is always used to produce

bits of output, where n is the block size of E.

If the size of the Constant is not equal to the block size of E,
then

the Constant must be n-folded to the block size of E. This string
is

used as input to E. If the block size of E is less than the key

size, then the output from E is taken as input to a second
invocation

of E. This process is repeated until the number of bits
accumulated

is greater than or equal to the key size of E. When enough bits
have

been computed, the first k are taken as the derived key.

Since the derived key is the result of one or more encryptions in
the

base key, deriving the base key from the derived key is equivalent
to

determining the key from a very small number of plaintext/
ciphertext

pairs. Thus, this construction is as strong as the cryptosystem

itself.

Deriving Keys from Passwords

When protecting information with a password or other user data, it
is

necessary to convert an arbitrary bit string into an encryption
key.

In addition, it is sometimes desirable that the transformation from

password to key be difficult to reverse. A simple variation on the

construction in the prior section can be used:

IETF_000105



Key = DK(k-fold(Password), Well-Known Constant)

k-fold is same algorithm as n-fold, used to fold the Password into
the same number of bits as the key of E.

The k-fold algorithm is reversible, so recovery of the k-fold
output

is equivalent to recovery of Password. However, recovering the k-

fold output is difficult for the same reason recovering the base
key

from a derived key is difficult.

Traditionally, the transformation from plaintext to ciphertext, or

vice versa, is determined by the cryptographic algorithm and the
key.

A simple way to think of derived keys is that the transformation is

determined by the cryptographic algorithm, the constant, and the
key.

For interoperability, the constants used to derive keys for
different

purposes must be specified in the protocol specification. Also,
the

endian order of the keys must be specified.

Horowitz [Page
3]

Internet Draft Key Derivation March,
1997

The constants must not be specified on the wire, or else an
attacker

who determined one derived key could provide the associated
constant

and spoof data using that derived key, rather than the one the

protocol designer intended.

Determining which parts of a protocol require their own constants
is
an issue for the designer of protocol using derived keys.

IETF_000106



Security Considerations

This entire document deals with security considerations relating to
the use of cryptography in network protocols.

Appendix

This Appendix quotes the n-fold algorithm from [Blumenthal96]. It
is
provided here as a convenience to the implementor. Sample vectors
are also included. It should be noted that the sample vector in
Appendix B.2 of the original paper appears to be incorrect. Two
independent implementations from the specification (one in C by the
author, and another in Scheme by Bill Sommerfeld) agree on a value
different from that in [Blumenthal96].

We first define a primitive called n-folding, which takes a
variable-length input block and produces a fixed-length output
sequence. The intent is to give each input bit approximately
equal weight in determining the value of each output bit. Note
that whenever we need to treat a string of bytes as a number,
the
assumed representation is Big-Endian —-— Most Significant Byte
first.

To n-fold a number X, replicate the input value to a length that

is the least common multiple of n and the length of X. Before

each repetition, the input is rotated to the right by 13 bit

positions. The successive n-bit chunks are added together using

1's—complement addiiton (that is, with end-around carry) to
yield

a n-bit result....

The result is the n-fold of X. Here are some sample vectors, in
hexadecimal. For convenience, the inputs are ASCII encodings of
strings.

64-fold("012345") =
64-fold(303132333435) = be072631276b1955

56-fold("password") =
56-fold(7061737377677264) = 78a@7bb6caf85fa

64-fold("Rough Consensus, and Running Code") =

64-fold(526175676820436T6e73656€7375732¢c20616€642052756¢e
6e696e672043676465) = bb6ed30870b7T0e0

IETF_000107



Horowitz [Page
4]

Internet Draft Key Derivation March,
1997

168-fold("password") =
168-fold(70617373776f7264) =
59e4a8ca7c0385c3c37b3f6d2000247cb6ebbd5b3e

192-fold ("MASSACHVSETTS INSTITVTE OF TECHNOLOGY"

192-fold(4d41535341434856534554545320494€5354495456544520
414620544543484e4f4c4T4759) =
db3b0d8f0b061e603282b308a50841229ad798Fab9540c1b

Acknowledgements

I would like to thank Uri Blumenthal, Hugo Krawczyk, and Bill
Sommerfeld for their contributions to this document.

References

[Blumenthal96] Blumenthal, U., "A Better Key Schedule for DES-Like
Ciphers", Proceedings of PRAGOCRYPT '96, 1996.

Author's Address

Marc Horowitz
Stonecast, Inc.
108 Stow Road
Harvard, MA 01451

Phone: +1 978 456 9103
Email: marc@stonecast.net

IETF_000108



Horowitz [Page
5]

IETF_000109



